Comparing Ontological Concepts to Evaluate
Similarity

Anton Andrejko, Michal Barla, and Michal Tvarozek

Institute of Informatics and Software Engineering
Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava
Ilkovi¢ova 3, 842 16 Bratislava, Slovakia
{andrejko, barla, tvarozek}@fiit.stuba.sk

Abstract. Various stages of data processing need to compare the con-
cepts they work with. In case of the object-oriented paradigm we often
use methods, which allow us to compare objects to other objects. In this
paper, we present a method for the comparison of ontological concepts
and the evaluation of their similarity. We identified two types of compar-
isons. First, the evaluation of distance between concepts by exploiting
the taxonomy of classes in the used ontology. Second, the comparison
of concepts’ attributes, where we consider object type attributes and
data type attributes. We describe the Concept Comparer software tool
(ConCom), which compares concepts from an existing job offer domain
ontology and quantitatively expresses their similarity.

1 Introduction

The importance of data and thus of data processing in contemporary systems is
on a steady rise. Probably every information system needs some means to com-
pare its data, e.g. for data sorting or data maintenance. Identifying differences
between data is also crucial for recommender systems. The advent of the se-
mantic web and thus that of ontological repositories introduced new challenges
in the field of data processing. One of them is the comparison of ontological
concepts (instances) and the evaluation of their similarity. Ontologies as such do
not provide sophisticated means of concept comparison. Furthermore, the lack
of proper comparison tools negatively affects the development and evaluation of
systems such as adaptive presentation frameworks or user modeling frameworks.

In closed information spaces (e.g., well defined electronic courses) one can
define relations between concepts explicitly. This approach is not feasible for
open information spaces where new data are added automatically. We propose
a method that compares ontological concepts and evaluates their measure of
similarity. We also consider the scrutability of the results, which explains the
reasons why a specific evaluation was made — what are the common and different
aspects of the compared concepts.

The paper is structured as follows: In section 2 we give an overview of the
current state of the art in the area. Section 3 describes the proposed algorithm



72 Anton Andrejko, Michal Barla et. al

of concept comparison. The software tool ConCom that realizes the method is
described in section 4. Finally, in section 5 we give our concluding remarks.

2 Related works

Existing approaches aimed at ontology comparison focus on the reduction of
manual effort that is necessary while comparing different ontologies to achieve
increased reusability and interoperability between different knowledge bases. The
process of comparing two different ontologies is known as ontology matching or
ontology mapping.

There are several systems that compare (match) ontologies. H-MATCH uses
four different matching models to provide a wide spectrum of metrics [1]. Linguis-
tic and context weighting features are used. For linguistic comparison a thesaurus
derived from WordNet is employed.

The COMA++ tool extends the previous prototype of the ontology matching
tool COMA. COMA++ uses OWL class hierarchies and RDF labels to support
matching between ontologies [2]. The similarity between two matching elements
is expressed as the distance in the taxonomy tree.

The GLUE tool is based on machine learning techniques [3] and consists
of three main modules — Distribution estimator, Similarity estimator and Re-
laxation labeler. The Similarity estimator module uses a predefined similarity
function to compute the similarity measure for each pair of concepts and gener-
ates a similarity matrix of the compared concepts.

While all these approaches deal with the mapping of ontologies, our approach
is focused on the comparison of individual concepts, which is a part of the ontol-
ogy mapping process. In our approach however, we also consider the user model
during the comparison which affects the weights of individual properties for the
final result.

3 Our approach to concept comparison

Based on the aforementioned issues, we identified several beneficial usage sce-
narios for which a suitable concept comparison tool is required. We propose a
method of concept comparison for ontological instances that should be suitable
for the following scenarios:

— The evaluation of the overall concept similarity, e.g. for clusterization algo-
rithms, semantic annotation tools or repository maintenance tools.

— The evaluation of similarity and the following identification of similar and/or
different aspects of concepts, e.g. for user modeling tools [4].

— The evaluation of the similarity of shared aspects of concepts, e.g. for user
suitability evaluation tools [5].



Comparing Ontological Concepts to Evaluate Similarity 73
3.1 Method overview

The proposed method is based on the recursive evaluation of different comparison
strategies with different metrics and their aggregation using different weights into
a final measure of similarity. The used weights can be either static, computed at
run time or optionally taken from a user model.

The similarity of two instances can be evaluated based on the similarity of
classes the instances belong to and based on the attributes and their values of the
instances. We defined the following comparison strategies based on the classes
the instances belong to:

— Evaluation of the number of common classes for instances belonging to mul-
tiple classes simultaneously.

— Evaluation of the distance of the compared concepts in the taxonomy tree
of classes in the ontology.

— Evaluation of the similarity of classes to which the instances belong based
on their attributes.

We defined the following comparison strategies based on the instances and
their attributes:

— Evaluation of the number and “size” of common, different and undefined
attributes of instances.

— Evaluation of the similarity of instances based on the values of their common
attributes.

Input. The input of the method consists of two identifiers (URIs) of individu-
als that should be compared and an optional user model identifier (URT). The
method itself can also be used to compare individuals from different ontolo-
gies, in which case the mapping between these ontologies can be specified as
another optional input. Furthermore, the required mode of operation (based on
the aforementioned scenarios) and the desired metrics must be specified.

Output. The results of the method consist of the desired similarity metric(s)
and an optional hierarchical tree of evaluations of similar/different aspects of
the compared instances for further processing and scrutability.

3.2 Class based similarity evaluation

Class based similarity focuses on the aspect of semantic similarity between the
compared instances — whether or not they represent semantically similar con-
cepts.



74 Anton Andrejko, Michal Barla et. al

Common and different classes. Since instances in ontologies can belong to
multiple classes simultaneously, one way of measuring the similarity of instances
at class level is to determine the number of common and different classes they
belong to. Consequently, if two instances belong to several classes simultaneously,
they are more similar than instances instances that have no common class (except
the base class e.g., owl:thing).

Distance in the taxonomy tree. The similarity of concepts can be determined
as a measure of the distance of the classes they belong to in the taxonomy tree of
the respective ontology. This evaluation can be done by using different metrics.
One possibility is to look for the nearest common parent class in the taxon-
omy. In this case, the distance is the number of steps required to connect the
classes of the two individuals via a common parent class. A example of a simple
taxonomy of programming languages with three instances is shown in Fig. 1.

Programming_Languages

A3
isa \'S\a
Object-oriented_Languages Functional_languages
AT
oolCSharp 0olJAVA flLisp

Fig. 1. Example of a simple class taxonomy of programming languages. The distance
between CSharp and Java is zero since they both belong to the same class. This is
obviously shorter than the distance of any object-oriented programming language to
a functional programming language, e.g. Lusp, which is connected via the Program-
ming _Languages class in two steps.

If the compared individuals belong to several classes simultaneously, we com-
pute the distances for each pair of classes separately. Here, different metrics can
be used that take either the shortest, longest or average distance as a result.
Furthermore, the aggregation of distances can be weighted based on the relative
size or similarity of the respective classes.

Class similarity. In order to evaluate the similarity of classes the instances
belong to we process the attributes of the respective classes and identify common
and different attributes. In case of object type attributes (i.e. not literals) we
also recursively compare the classes of the attributes themselves. Similar classes



Comparing Ontological Concepts to Evaluate Similarity 75

have more equivalent attributes than less similar classes, while classes that have
little in common are likely to have little if any equivalent attributes.

Again, if the compared individuals belong to multiple classes simultaneously,
different metrics and aggregation methods can be used.

3.3 Instance based similarity evaluation

While class based similarity evaluation relies on the high-level semantic simi-
larity of classes two instances belong to, instance based similarity examines the
attribute values of individual instances. It determines the “practical”’ level of
similarity between two instances, which might even belong to the same class.

For example, class based similarity can determine that a city is quite similar
to a settlement, yet only instance based similarity is able to determine that New
York — an instance of city is quite different from Black Rock — an instance of
settlement.

Number of common, different and undefined attribute values. The
easiest way of comparing two instances is to determine the total number of
their common, different and undefined attributes. For each common attribute
of the compared instances we determine whether its values are equal, different
or undefined. More similar instances will have more attributes with equal values
than less similar ones. Furthermore, if a value for an attribute is undefined, it
implies a lower measure of dissimilarity than if it were defined but different.

Similarity of common attributes with different values. Once different
values of common attributes of instances are identified, we determine their mea-
sure of dissimilarity. Object type attributes and data type attributes must be
treated differently due to their different nature. For different values of object
type attributes, we use our method recursively and determine their respective
similarity, whereas for data type attributes we directly compare the respective
literals.

When comparing literals, a simple string comparison does not give satisfac-
tory results, e.g. “computer skills”, “Computer Skills”, “COMPUTER SKILLS”
only differ in capitalization, yet would appear totally different. The semantic
dissimilarities in texts must be evaluated. A method for such evaluation was pro-
posed in [6] and compares texts on several levels (whole text, sentences, words,
symbols).

Different sets of predefined or computed weights can be used to aggregate the
results of several attributes into one final value. For example, when comparing
two user models to find out whether a recommender system can use the ratings
of one user to recommend content to another user we should not consider user
names as they are not relevant. Therefore, their respective weights would be
Zero.

Furthermore, weights can be computed by a given metric (e.g., the depth
of the object property hierarchy) or from a user model using relevance of the
respective attributes as described in [7].



76 Anton Andrejko, Michal Barla et. al

3.4 Aggregation of results

Since the proposed comparison strategies can be combined in various ways it
is necessary to aggregate their results in order to compute a single comprehen-
sive measure of similarity. Thus, after evaluating individual strategies and their
corresponding metrics for the compared instances, we use a set of predefined
weights to aggregate partial results into a final similarity value. However, it is
also important to provide partial results of individual strategies since partial
results might be important for specific applications.

4 Experimental evaluation

4.1 Prototype implementation

The ConceptComparer — ConCom is a software tool developed in the context of
NAZOU! project that implements the proposed method of concept comparison.

The ConCom tool will be implemented in JAVA and will use Corporate
memory [8] of project NAZOU to access information stored in the ontological
repository Sesame?.

ConCom takes two URIs of instances as input. Additional optional inputs
include a user model URI and mappings of ontological concepts from different
ontologies. As output, ConCom returns an object, which contains a single num-
ber representing the similarity of the compared individuals as well as a set of
methods which provide access to the results partial comparison strategies and
metrics performed during the comparison.

4.2 Integration with other NAZOU tools

Project NAZOU [9] uses open information base of job offers represented by an
ontology. The comparison of ontological instances is a useful service that can
be successfully used by other tools of project NAZOU in several stages of data
processing and presentation.

The Ontea tool, which creates ontological metadata using semantic annota-
tion of textual documents [10] can use concept comparison to determine whether
the ontological repository already contains semantically equivalent information.

The Log Analyzer tool [4] estimates user characteristics by analyzing user
behavior within a system. Concept comparison, which gives information about
common and different aspects of concepts can reveal reasons why users behave
differently and can thus lead to user characteristics.

Concept comparison can also be useful for the creation of clusters. Clustering
tools based on ontological representation such as Job Cluster Navigator [11]
might yield better results than clustering tools based on probabilistic models of
occurrences of words in documents such as Aspect.

! Project NAZOU, http://nazou.fiit.stuba.sk
% Sesame ontological repository, http://www.openrdf . com



Comparing Ontological Concepts to Evaluate Similarity 77

Presentation tools can also benefit from concept comparison. The Factic
faceted browser [5] uses concept comparison to compare job offer attributes and
user preferences concerning job offers stored in a user model [7]. The Criteria
Search tool enables users to find job offers relevant to a given set of criteria. It
is capable of finding jobs that match user criteria more coarsely and sorts the
results according to the fulfillment of selected criteria. A simple form of concept
comparison is used to order the retrieved job offers.

5 Conclusions

We described issues of concepts and concept comparison in ontologies. We iden-
tified the need for comprehensive comparison of ontological instances that could
be used a a wide array of data processing tools for the semantic web.

Furthermore, we proposed a method of comparison of ontological individu-
als and defined a set of comparison strategies that might be used both at the
class level and instance level of abstraction. These include the evaluation of the
distance of classes in ontologies and the recursive comparison of instances and
the values of their attributes. Consequently, we also defined a way of combining
individual strategies into one resulting measure of similarity between concepts.

Moreover, we included the “adaptation” of weights of individual attributes of
an instance based on the relevance of the attributes stored in a user model. Lastly,
we described the evaluation of the proposed method in the form of the ConCom
tool within project NAZOU together with the possibilities of its integration with
other tools of the project.

Future work includes the implementation of the ConCom tool, its integra-
tion with other tools and its evaluation in the domain of job offers and scientific
papers with different weight settings and metrics. Future enhancements to the
proposed method might include the definition of additional comparison strate-
gies, improved support for work with different ontologies and broader use of user
models.

Acknowledgment

This work was partially supported by the Slovak State Programme of Research
and Development “Establishing of Information Society” under the contract No.
1025/04.

References

1. Castano, S., Ferrara, A., Montanelli, S., Racca, R.: From surface to intensive
matching of semantic web ontologies. In: DEXA Workshops, IEEE Computer
Society (2004) 140-144

2. Aumueller, D., Hai Do, H., Massmann, S., Rahm, E.: Schema and ontology match-
ing with coma++. In Ozcan, F., ed.: SIGMOD Conference, ACM (2005) 906-908



78

10.

11.

Anton Andrejko, Michal Barla et. al

Doan, A., Madhavan, J., Domingos, P., Halevy, A.Y.: Learning to map between
ontologies on the semantic web. In: WWW. (2002) 662-673

Barla, M.: Interception of user’s interests on the web. In Wade, V., Ashman, H.,
Smyth, B., eds.: 4th Int. Conf. on Adaptive Hypermedia and Adaptive Web-Based
Systems, AH’06, Dublin, Ireland, Springer, LNCS 4018 (2006) 435-439

Tvarozek, M.: Personalized navigation in the semantic web. In Wade, V., Ashman,
H., Smyth, B., eds.: 4th Int. Conf. on Adaptive Hypermedia and Adaptive Web-
Based Systems, AH’06, Dublin, Ireland, Springer, LNCS 4018 (2006) 467-471
Tury, M., Bielikova, M.: An approach to detection ontology changes. In: 1st Int.
Workshop on Adaptation and Evolution in Web Systems Engineering (AEWSE
06) at ICWE 2006, Palo Alto, California, ACM Press (2006) Accepted.

Andrejko, A., Barla, M., Bielikova, M.: Ontology-based user modeling for web-
based information systems. In: Information Systems Development (ISD), Springer
(2006)

Ciglan, M., Babik, M., Laclavik, M., Budinska, I., Hluchy, L.: Corporate memory:
A framework for supporting tools for acquisition, organization and maintenance
of information and knowledge. In: Proc. of 9-th Intl. Conf. ISIM’06 "Information
Systems Implementation and Modelling", Brno, April, MARQ Ostrava. (2006)
185-192

Néavrat, P., Bielikova, M., Rozinajova, V.: Methods and tools for acquiring and
presenting information and knowledge in the web. In: Int. Conf. on Computer
Systems and Technologies, CompSysTech 2005, Varna, Bulgaria (2005)

Laclavik, M., et al.: Semantic annotation based on regular expressions. In Vojtas,
P., ed.: ITAT 2005 - Workshop on Theory and Practice of Information Technologies.
(2005) 305-306

Frivolt, G., Bielikova, M.: Topology generation for web communities modeling. In
Vojtas, P., Bielikova, M., Charron-Bost, B., Sykora, O., eds.:. SOFSEM. Volume
3381 of Lecture Notes in Computer Science., Springer (2005) 167-177





