
Comparing Instances of the Ontological
Concepts

Anton Andrejko and Mária Bieliková

Faculty of Informatics and Information Technologies,
Slovak University of Technology,

Ilkovičova 3, 842 16 Bratislava, Slovakia
{andrejko,bielik}@fiit.stuba.sk

Abstract. Knowing user’s rating of displayed concepts we can acquire
some characteristics for personalization purposes by analyzing the con-
tent. In this paper we present a method for comparison of instances of
ontological concepts. During the comparison we examine the relationship
of the compared concepts based on the used class taxonomy. We also tra-
verse all of their attributes, which might be either data type or object
type attributes. For each attribute we look for adequate attribute in the
second instance to be compared. When comparing attributes, a simple
comparison of strings does not give satisfactory results as the semantic
dissimilarities need to be evaluated. We extend achieved similarity mea-
sure with content’s attribute that caused different rating according to
defined threshold values.

1 Introduction

On the Web there are many applications that somehow try to differ from the
others and satisfy potential visitors or even make them use offered services again.
One of the approaches is personalization provided by adaptive applications.
Information about the user is held in the user model as a characteristic and
consequently personalization of the content, navigation or presentation can be
accomplished according to it.

One way to acquire the user’s characteristics is to ask the user explicitly or
observe one’s behavior while working with the application (implicit feedback).
Also mining user characteristics from logs can be helpful. The logging can be
processed on client-side and/or server-side. In [1] there is described a method for
acquisition of user characteristics from logs with semantics while an estimation
of the user’s actions from the logs is performed aimed at the user model update.
The logging (and implicit feedback in general) requires sequential processing to
transform acquired information into the user characteristics.

In this paper we use explicit feedback (user’s rating given to the displayed
concept) and we focus on analyzing of the content, namely similarity between
concepts. Especially, while working in the Semantic Web environment we have
concepts in ontological representation, i.e. we have meta-data describing the

semantics of the displayed content parts that we can use to deduce user’s char-
acteristics.

Knowing user’s rating of displayed concepts we can acquire some character-
istics by analyzing the content. Since the rating varies on different concepts we
need to figure out reasons why it is low or high. For instance, consider concepts
describing job offers in information technology (IT). One can stumble in hun-
dreds of offers on the Web that advertise position for Java programmers requiring
high school education, at least three years of previous experience, knowing basics
in Web technologies, providing motivating salary, etc. Let us have two of them
that differ only in the job location. Let us have the first one located somewhere
in Europe, e.g. in London and the second one in the United States, e.g. in Wash-
ington, D.C. Assume we get different ratings for these two job offers. Probably
the variety of evaluation could have been caused by the job location attribute.
As the matter of fact, it is not important if the user from Europe prefers to work
in Europe (high rating for job offer located in London) or we have the case of
an adventurer who wants to try an overseas job (high rating for Washington).

From different ratings given to different concepts we can deduce particular
user’s characteristics (its value). On the other hand, in case we get the same
ratings for different concepts we can deduce user’s preferences (characteristic
only). From our last example we could deduce that job location is not important
factor for the user.

Therefore, we need to identify common and different aspects of the ontolog-
ical concepts. To achieve this goal we have decided to compare concepts and
determine the level of similarity for particular aspects.

The paper is structured as follows. In section 2 we give an overview of the
current state of art in the area. Section 3 deals with the numerical evaluation of
the similarity. In section 4 we describe the proposed method that realizes com-
parison of ontological instances on the basis of recursive traversing its structure.
Finally, section 5 gives our concluding remarks.

2 Related work

So far, we have used the term concept mostly intuitively, but a concept is a set
or a class of individual objects that can have simple properties, often called
attributes, which are typically attached to the corresponding concepts [2]. The
concept is sometimes used in place of class, where classes are a concrete rep-
resentation of concepts [3]. At this point we need to point out that there are
two different ways how to think about ontological concepts – intensional and
extensional.

Considering intensional approach, the concept consists of a set of attributes
that are its descriptors, whereas using extensional approach, the concept consists
of a set of objects, i.e. instances of ontological concepts. The intensional approach
is typical in creating domain ontologies on the Semantic Web, whereas the ex-
tensional approach is used mostly in Formal Concept Analysis (FCA) aimed at
support the user in analyzing and structuring a domain of interest [4].

The approach that takes into account both ways is described in [4]. It pro-
poses a method for computing similarity of FCA concepts and allows identifica-
tion of different concepts that are semantically close. In FCA concept is defined
within a context (O,A,R) where O stands for set of objects, A for set of at-
tributes and R is binary relation between O and A. Considering all the concepts
in this context the concept lattice can be constructed. The main drawback of
this method is that similarity ontology holding similarity relations between at-
tributes and entity names from domain ontology has to be given. For instance,
semantic similarity between “city” and “capital” can be evaluated to 0.8. Af-
ter we have domain ontology and context similarity graph can be constructed.
The advantage of this approach is that total similarity for more than 2 concepts
can be expressed as one number. Furthermore, the similarity of concepts from
different contexts can be computed as well.

In [5] there is proposed a method of processing concept comparison empha-
sizing structural aspect of the concept. The comparison is accomplished in two
phases. The first phase is focused on preprocessing the concepts that are about
to be compared. Two graphs are built – inheritance graph that organizes on-
tological concepts according to a generalization hierarchy and similarity graph
in which nodes relate to concept and edges have assigned similarity degree. In
the second phase the similarity is evaluated according to three steps. First, flat
structural similarity is computed exploiting structural slots (part, related, predi-
cate). Second, hierarchical structure is exploited by using results from previous
step and extending them by further elements according to the hierarchical re-
lationships. In the third step, the final similarity measure between concepts is
computed as a result of combination of two previous steps. The described method
was evaluated in SymOntos system in the course of the European project aimed
at construction and maintenance of tourism ontologies.

The problem of the similarity identification in ontologies is not a completely
new idea and it is known as ontology mapping or ontology matching. Its aim is
to increase reusability and interoperability between different ontologies covering
the same application domain. In [6] there is described an approach aimed at
identification of changes in ontology versions that uses comparing of instances
as one of heuristics.

The approach described in [7] uses three independent similarity assessments
to determine similarity between concepts. The first level is construction of the
model that deals with synonyms to ensure that synonyms refer to the same entity.
The second level incorporates semantics by using distinguishing features. The
third level uses semantic relations (e.g. is-a relation) as the subject of comparison
to find out whether connected entities are related to the same set of entity classes.
Then, the distance between two concepts is measured by the shortest path.

In [8] there is described an approach that realizes ontology mapping in four
stages, that include similarity of labels (classes, instances, relations), instances,
structures and previous mapping results verified by the application. While com-
paring instances the Edit-Distance [9] method is used together with Glue ap-
proach. The GLUE tool is based on machine learning techniques [10]. It consists

of three main modules (Distribution estimator, Similarity estimator and Relax-
ation labeler). From our point of view, Similarity estimator model is interesting.
It uses predefined similarity function to compute a similarity value for each pair
of concepts and generates the similarity matrix referring to concepts being com-
pared.

The common sign for all the mentioned approaches is that they do not try to
investigate reasons that caused similarity for further processing. From this point
of view we consider our approach as contributive.

3 Similarity evaluation

In general, we can formally define the similarity for two arbitrary objects x, y
as follows [11]:

– sim (x, y) ∈ [0..1],
– sim (x, y) = 1 → x = y: concepts are identical,
– sim (x, y) = 0: concepts are different, they have nothing in common,
– sim (x, x) = 1: similarity is reflexive,
– sim (x, y) = sim (y, x): the similarity is symmetric.

We count the total similarity continuously step by step as the different eval-
uation strategies are used, i.e. each strategy contributes to the total similarity
with its own partial similarity evaluation as counted for two given objects. In this
case we do not consider object as a part of the ontology triple (subject, predicate
and object). Here, an object is everything what is intended to be compared. For
instance, it can be an attribute (both object and data type), an object assigned
to the object type attribute or a literal, what is a string in general. The total
similarity measure of two concepts is given as:

totalSimilarity =
∑

partialSimilarity

evaluationCount
,

where partialSimilarity is a number from interval 〈0, 1〉 and says how much
are compared objects similar while using particular comparing strategy, evaluati-
onCount is the number of comparisons that have been processed.

The question is what will happen if we compare concepts with mutually
different number of attributes. We need to make a decision whether we consider
smaller or higher number of attributes.

Let us assume we have two concepts x, y that are identical. As we defined
earlier the similarity measure of two identical concepts equals 1. Let us enrich the
concept y with some additional attribute. If we do not consider all the attributes
in the enumeration, the evaluationCount will not change and the total similarity
measure while using the same strategies for the evaluation will remain 1. Since
numerically evaluated similarity equal 1 means an identity, it is not true in this
case and it contradicts one of the conditions we defined above. Therefore, we
consider the higher number of attributes while counting total similarity measure.

Similarly, let us return to the problem when we have not found respective
attribute in the second instance. In this case we do not need to count the simi-
larity – similarity of the object and none object is zero. But we should consider
this difference in the instances. Therefore, we increase only evaluationCount for
every such object.

There is a space to use more strategies to evaluate similarity between two
objects. The overview of methods that can be used is described in [12]. For in-
stance, we can use different similarity strategies to evaluate similarity between
two short strings “JobOffer” and “job offer”. Different strategies can lead to var-
ious results of the partial similarity. Here, we could get similarity equal one but
also similarity lower then one depending on used heuristics. Achieved similarity
thus also relates to accuracy. Therefore, we take this fact into account and we
use two ways to evaluate the total similarity measure:

– similarity minimization – if different partial similarities were counted we
consider the smallest value as an addition to the total similarity,

– similarity maximization – if different partial similarities were counted we
consider the highest value as an addition to the total similarity.

4 Similarity of Ontological Concepts Instances

The ontology contains additional information that can be acquired from its struc-
ture and thus help get better results than comparing instance’s attributes only
one-to-one. The evaluation of the similarity between ontological concepts, which
are represented as class instances, is therefore performed according to the in-
stance’s structure. In the Figure 1 is shown a simple example of the part of
ontology instance representing a job offer. The job offer ontology was developed
in the course of the project NAZOU [13].

Every instance can consist of either object type or data type attributes.
Attributes are in the figure represented as arcs. We use italic font for data
type attributes (e.g. jo:maxAmount) in order to distinguish them from ob-
ject type attributes. Moreover, object type attributes can be multiple (e.g.
jo:hasPrerequisity). For simplicity, in the Figure 1 are multiple attributes sur-
rounded by a rounded box.

4.1 Recursive Traversing of the Concept Structure

We have proposed a method based on the recursive evaluation of the attributes
and objects they are connected to. The inputs and outputs of the method are
depicted in the Figure 2.

The similarity evaluation begins with an estimation of the attributes that
are directly connected to the instance identifier (the attribute corresponds to the
predicate if we consider ontology representation as the set of triples – subject,
predicate and object). We use DISTINCT keyword in the query for acquiring
attributes. It assures that we will not get back two attributes with the same

JobOffer_1

jo:hasPrerequisite

jo:hasResponsibility

S001_rOffer01004

jo:hasSalary

jo:Text

jo:isInCurrency
r:USD

jo:Text

jo:Text

Text
Ability to obtain security
clearance (Top Secret preferred).

Text
...

S001_Salary_120-130 jo:maxAmount
jo:bonus

jo:minAmount

Text
130000.0

Text
120000.0

Text
Salary:$120K-$130K + bonus

S001_exrCustomersCommunication

S001_exrComputer_science_Electronic_engi...

S001_erCollege_degree

S001_orSecurityClearance

...

Text
Create Market Information Circulars informing traders of business and
operational changes that accompany new functionality

Text
Provide functional validation and business rationale
throughout the testing process

Text
Manage Product Management Life Cycle for developed products

Fig. 1. An example of the ontological instance representing a part of job offer. Every
object in the figure has its unified identifier but we present only object’s label.

identifier. Here, we eliminate the default w3c attributes1, since they can be
found in both instances and have the same values. Their evaluation would be
wasting of the effort with no profit.

For each attribute we look for the same attribute in the second instance.
At this point it depends what is the type of the examined attribute. When
data type attribute is evaluated, the algorithm ends by using strategies intended
for comparing strings. Object type attributes are processed recursively by using
assigned strategies until we reach data type level with evaluating as we mentioned
above.

1 e.g. http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Instance A

Instance B

Similarity
strategies

TotalSimilarity

[0..1]

Concept
comparer + -

Fig. 2. Inputs and outputs of the method. The input for the comparing instances of
ontological concepts is two instances and a set of similarity strategies. The output is
quantitatively expressed similarity measure between instances and output object that
consists of two sets of attributes – a positive and a negative.

For the object type attribute two sets of objects that are connected to that
attribute (e.g. hasPrerequisite) in each instance are acquired. In these sets we
can apply variety of strategies related to object attributes. Comparing all objects
from two sets mutually gives complexity O(n2) but can be decreased since we
eliminate identical identifiers after they are found. On the other hand, we have
to deal with the left over attributes to which the respective attributes in the
second instance have not been found. Since we compare instances from the same
ontology we do not process similarity evaluation for them, i.e. we do not look
for match between two attributes names. We only adjust the final similarity
measure. The following piece of pseudo code demonstrates the basic idea of the
algorithm:

1. ID = FirstInstance
2. get all attributes where ID stands for Subject
3. for each attribute
4. pick an attribute from SecondInstance
5. if attribute is data type
6. use string strategies to evaluate similarity
7. if attribute is object type
8. use class based similarity strategies to

evaluate similarity
9. ID = Object
10. go to line 2
11. count partial similarity
12. count total similarity

As we can see in the example above, we use identifier ID to be able acquire
attributes for any object and use the algorithm recursively. In the first run there

is assigned URI of the first instance to the ID. After all the attributes are acquired
the examination and comparing with the second instance can start.

While traversing the ontological structure we have to consider the fact that an
attribute can have its inverse attribute as well. For instance, Washington, D.C. is
connected to the job offer with the attribute jo:hasDutyLocation. Since more than
one job offer can be located in Washington, D.C., we require all of them to refer to
the same object (e.g. Washington, D.C. jo:isDutyLocationOf others job offers).
If we did not take inverse attribute into account the traverse algorithm would
continue through it to other instances. The same problem causes symmetric
attributes; therefore we filter out all the inverse and symmetric attributes.

4.2 Investigating rating’s reasons

Our goal is to evaluate similarity between instances of ontological concepts and
also to investigate the reasons of user’s rating given to the displayed content.
From the user’s evaluation we can deduce user’s likes or dislikes. If the content
includes an attribute that the user likes it will likely influence her rating towards
higher (or positive) values. On the other hand, attributes of the content that the
user dislikes will influence rating towards lower (or negative) values.

To be able distinguish between preferences (negative and positive) we in-
troduce a threshold value. Since one can also express neutral attitude we have
proposed two threshold values – positive and negative defined respectively to
the preferences. Those values divide attributes into three sets. The purpose of
searching for rating’s reason is to transform attributes into the user model char-
acteristics for further personalization. The transformation is not the concern of
this paper. The adequate personalization requires characteristics we are confi-
dent about that to reflect real preferences of the user. Therefore, we are inter-
ested only in the most outer sets and we omit the neutral set. We propose for
positive threshold similarity measure 0.85 and 0.15 for negative threshold. The
adjustment of the thresholds will be a matter of further experiments.

The lists with attributes are being filled as the instances are being compared.
After the similarity between objects is evaluated according to reached similarity
measure, the attribute, the object is related to, is assigned to the one of the lists.
We store in the lists URIs of the attributes.

5 Conclusions

The paper proposes the method that processes comparison of instances of onto-
logical concepts. The method is based on the recursive traversing of instance and
comparing particular parts with respective parts in the second instance. Several
different strategies can be used. Besides expressing similarity between instances
(we use different strategies to evaluate data type and object attributes) we focus
on reasons of rating given to the displayed concept. We proposed two thresholds
to distinguish between user’s preferences and according to thresholds we build

two sets of attributes – a positive and a negative. Those can be used by other
tools to be transformed into user characteristics in the user model.

The evaluated similarity can be useful as a support for clusterization algo-
rithms [14], semantic annotation tools [15] or repository maintenance tools [16].
Furthermore, the part realizing identification of similar or different aspects can
be used for personalization purposes by user modeling tools.

The proposed method is not very suitable to compare instances from differ-
ent ontologies since we do not evaluate similarity between attributes. This might
be one of future extensions of the method. Furthermore, we plan to extend the
method with user model involvement while evaluating similarity. Considering
user preferences from the user model makes the result of comparison more ac-
curate from the personalization point of view. In the future, we want to focus
on structure of the instance while counting similarity and introduce weighting
respecting the depths of the instance since it can vary in different ontologies.

A software prototype called ConCom (concept comparer) that realizes the
proposed method is being developed. The future work includes integration with
other tools and two types of experiments.

First group of experiments will be focused on verification of the self-standing
software prototype and adjusting thresholds. Here, we want to approve that sim-
ilarity between concepts fulfill similarity criteria described in section 3, namely
identity, symmetry and reflexivity.

The second group of experiments will be focused on attributes acquired while
comparing instances and their usefulness for the Log Analyzer tool that estimates
user characteristics by analyzing user behavior within a system.

Acknowledgment

This work was partially supported by the State programme of research and devel-
opment “Establishing of Information Society” under the contract No. 1025/04.

References

1. Andrejko, A., Barla, M., Bieliková, M., Tvarožek, M.: User characteristics ac-
quisition from logs with semantics. In: ISIM ’07 Information Systems and Formal
Models: 10th International Conference on Information System Implementation and
Modeling. (2007) 103–110

2. Baader, F., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. In: The description
logic handbook: Theory, implementation, and applications. Cambridge University
Press (2003)

3. Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C. In: A Practical
Guide To Building OWL Ontologies Using The Protégé-OWL Plugin and CO-ODE
Tools Edition 1.0. The University Of Manchester (2004)

4. Formica, A.: Ontology-based concept similarity in formal concept analysis. Infor-
mation Sciences 176(18) (2006) 2624–2641

5. Formica, A., Missikoff, M.: Concept similarity in symontos: An enterprise man-
agement tool. The computer Journal 45(6) (2003) 583–595

6. Tury, M., Bieliková, M.: An approach to detection ontology changes. In: ICWE ’06:
Workshop proceedings of the sixth international conference on Web engineering,
Palo Alto, California, ACM Press (2006)

7. Rodŕıguez, M.A., Egenhofer, M.J.: Determining semantic similarity among en-
tity classes from different ontologies. IEEE transactions on knowledge and data
engineering 15(2) (2003) 442–456

8. Liu, X., Wang, Y., Wang, J.: Towards a semi-automatic ontology mapping – an
approach using instance based learning and logic relation mining. In: Proceedings
of Fifth Mexican International Conference on Artificial Intelligence (MICAI‘06),
IEEE (2006)

9. AnHai, D., Jayant, M., Robin, D., Pedro, D.and Alon, H.: Learning to match
ontologies on the semantic web. The VLDB Journal 12(4) (2003) 303–319

10. Doan, A.H.e.a.: Learning to map between ontologies on the semantic web. In:
Proceedings of the 11th international conference on World Wide Web, Honolulu,
Hawaii, USA, ACM Press (2002)

11. Bisson, G.: Why and how to define a similarity measure for object based repre-
sentation systems. In: Towards Very Large Knowledge Bases. (1995) 236–246

12. Andrejko, A., Barla, M., Tvarožek, M.: Comparing ontological concepts to evaluate
similarity. In: Tools for Acguisition, Organisation and Presenting of Information
and Knowledge: Research Project Workshop. (2006) 71–78

13. Návrat, P., Bieliková, M., Rozinajová, V.: Acquiring, organising and presenting
information and knowledge from the web. In: CompSysTech’06, Veliko Turnovo,
Bulgaria, Bulgarian Chapter of ACM (2006)

14. Frivolt, G., Pok, O.: Comparison of graph clustering approaches. In Bieliková, M.,
ed.: Proceedings in IIT-SRC 2006, Veliko Turnovo, Bulgaria, Slovak University of
Technology (2006) 168–175

15. Laclav́ık, M., Šeleng, M., Gatial, E., Balogh, Z., Hluchý, L.: Ontology based text
annotation - OnTeA. In Duzi, M., Jaakkola, H., Kangassalo, H., Kiyoki, Y., eds.:
Information Modelling and Knowledge Bases XVIII, Amsterdam, IOS Press (2006)

16. Ciglan, M., Bab́ık, M., Laclav́ık, M., Budinská, I., Hluchý, L.: Corporate memory:
A framework for supporting tools for acquisition, organization and maintenance of
information and knowledge. In Duzi, M., Jaakkola, H., Kangassalo, H., Kiyoki, Y.,
eds.: Proceedings of 9th International Conference ISIM’06 “Information Systems
Implementation and Modelling”, Brno, MARQ Ostrava (2006) 185–192

